Hach Flo-Dar Basic User Manual

Taper
Basic User Manual
DOC026.98.80380
Flo-Dar Sensor
09/2019, Edition 6
Basic User Manual
Basis-Benutzerhandbuch
Manuale di base per l'utente
Manuel d'utilisation de base
Manual básico del usuario
Manual Básico do Usuário
Podstawowa instrukcja obsługi
Grundläggande bruksanvisning
Temel Kullanım Kılavuzu
Osnovni uporabniški priročnik
Table of Contents
English..............................................................................................................................3
Deutsch.......................................................................................................................... 30
Italiano............................................................................................................................ 59
Français......................................................................................................................... 87
Español........................................................................................................................ 116
Português.................................................................................................................... 145
Polski............................................................................................................................ 174
Svenska....................................................................................................................... 203
Türkçe...........................................................................................................................230
Slovenski..................................................................................................................... 257
2
5 Installation on page 10
6 Operation on page 25
7 Maintenance on page 25
Table of Contents
1 Table of contents on page 3
2 Expanded manual version on page 3
3 Specifications on page 3
4 General information on page 4
Section 2 Expanded manual version
For additional information, refer to the expanded version of this manual, which is available on the
manufacturer's website.
Section 3 Specifications
Specifications are subject to change without notice.
Specification Details
Dimensions (W x D x H) 160.5 x 432.2 x 297 mm (6.32 x 16.66 x 11.7 in.); with SVS,
D=287 mm (15.2 in.)
Weight 4.8 kg (10.5 lb)
Enclosure IP68 waterproof rating, polystyrene
Pollution degree 3
Protection class III
Installation category I
Operating temperature –10 to 50 °C (14 to 122 °F)
Storage temperature –40 to 60 °C (–40 to 140 °F)
Altitude 4000 m (13,123 ft) maximum
Power requirements Supplied by FL Series flow logger
Interconnecting cable (disconnect at both
sensor and logger ends)
Polyurethane, 0.400 (±0.015) inch diameter
IP68
Standard length: 9 m (30 ft); maximum length: 305 m (1000 ft)
Depth measurement Method: Ultrasonic
Standard operating range from Flo-Dar sensor housing to liquid:
0–152.4 cm (0–60 in.)
Optional extended operating range from transducer face to liquid:
0–6.1 m (0–20 ft) (with 43.18 cm (17 in.) deadband), temperature
compensated
Accuracy: ±1%; ±0.25 cm (±0.1 in.)
English 3
Specification Details
Surcharge depth measurement Method: Piezo resistive pressure transducer with stainless steel
diaphragm
Auto zero function maintains zero error < 0.5 cm (0.2 in.)
Range: 3.5 m (138 in.); overpressure rating: 2.5 × full scale
Velocity measurement Method: Pulsed radar - Doppler
Range: 0.23–6.10 m/s (0.75–20 ft/s)
Frequency Range: EU Models—24.175 GHz ± 15 MHz, US/Canada
Models—24.125 GHz ± 15 MHz
Output Power: EU Models—20 mW (13 dBm) nominal ± 10%,
US/Canada Models—2.5 V/m at 3 meters (maximum field strength)
Accuracy: ±0.5%; ±0.03 m/s (±0.1 ft/s)
Certifications The Flo-Dar transmitter has the wireless certifications that follow:
European Union (EU): CE mark
United States (US): FCC ID: VIC-FLODAR24
Canada: IC: 6149A-FLODAR24
Brazil: ANATEL: 01552-13-09098
Flow measurement
Method Based on the continuity equation
Accuracy ±5% of reading is typical where flow is in a channel with uniform flow
conditions and is not surcharged, ±1% full scale maximum
Surcharge conditions depth/velocity
Depth (standard with Flo-Dar sensor) Surcharge depth supplied by Flo-Dar sensor
Velocity (with optional surcharge velocity
sensor)
Method: Electromagnetic
Range: ±4.8 m/s (±16 ft/s)
Accuracy: ±0.046 m/s (±0.15 ft/s) or 4% of reading, whichever is more
Zero stability: > ±0.015 m/s (±0.05 ft/s) typical
Section 4 General information
In no event will the manufacturer be liable for direct, indirect, special, incidental or consequential
damages resulting from any defect or omission in this manual. The manufacturer reserves the right to
make changes in this manual and the products it describes at any time, without notice or obligation.
Revised editions are found on the manufacturer’s website.
4.1 Safety information
N O T I C E
The manufacturer is not responsible for any damages due to misapplication or misuse of this product including,
without limitation, direct, incidental and consequential damages, and disclaims such damages to the full extent
permitted under applicable law. The user is solely responsible to identify critical application risks and install
appropriate mechanisms to protect processes during a possible equipment malfunction.
Please read this entire manual before unpacking, setting up or operating this equipment. Pay
attention to all danger and caution statements. Failure to do so could result in serious injury to the
operator or damage to the equipment.
4
English
Make sure that the protection provided by this equipment is not impaired. Do not use or install this
equipment in any manner other than that specified in this manual.
4.1.1 Use of hazard information
D A N G E R
Indicates a potentially or imminently hazardous situation which, if not avoided, will result in death or serious injury.
W A R N I N G
Indicates a potentially or imminently hazardous situation which, if not avoided, could result in death or serious
injury.
C A U T I O N
Indicates a potentially hazardous situation that may result in minor or moderate injury.
N O T I C E
Indicates a situation which, if not avoided, may cause damage to the instrument. Information that requires special
emphasis.
4.1.2 Precautionary labels
Read all labels and tags attached to the instrument. Personal injury or damage to the instrument
could occur if not observed. A symbol on the instrument is referenced in the manual with a
precautionary statement.
This is the safety alert symbol. Obey all safety messages that follow this symbol to avoid potential
injury. If on the instrument, refer to the instruction manual for operation or safety information.
This symbol indicates that a risk of electrical shock and/or electrocution exists.
This symbol indicates the presence of devices sensitive to Electro-static Discharge (ESD) and
indicates that care must be taken to prevent damage with the equipment.
Electrical equipment marked with this symbol may not be disposed of in European domestic or public
disposal systems. Return old or end-of-life equipment to the manufacturer for disposal at no charge to
the user.
This symbol, when noted on the product, identifies the location of a fuse or current limiting device.
This symbol indicates that the marked item requires a protective earth connection. If the instrument is
not supplied with a ground plug on a cord, make the protective earth connection to the protective
conductor terminal.
4.1.3 Confined space precautions
D A N G E R
Explosion hazard. Training in pre-entry testing, ventilation, entry procedures, evacuation/rescue
procedures and safety work practices is necessary before entering confined spaces.
The information that follows is supplied to help users understand the dangers and risks that are
associated with entry into confined spaces.
English
5
On April 15, 1993, OSHA's final ruling on CFR 1910.146, Permit Required Confined Spaces, became
law. This standard directly affects more than 250,000 industrial sites in the United States and was
created to protect the health and safety of workers in confined spaces.
Definition of a confined space:
A confined space is any location or enclosure that has (or has the immediate potential for) one or
more of the following conditions:
An atmosphere with an oxygen concentration that is less than 19.5% or more than 23.5% and/or a
hydrogen sulfide (H
2
S) concentration that is more than 10 ppm.
An atmosphere that can be flammable or explosive due to gases, vapors, mists, dusts or fibers.
Toxic materials which upon contact or inhalation can cause injury, impairment of health or death.
Confined spaces are not designed for human occupancy. Confined spaces have a restricted entry
and contain known or potential hazards. Examples of confined spaces include manholes, stacks,
pipes, vats, switch vaults and other similar locations.
Standard safety procedures must always be obeyed before entry into confined spaces and/or
locations where hazardous gases, vapors, mists, dusts or fibers can be present. Before entry into a
confined space, find and read all procedures that are related to confined space entry.
4.1.4 EU/FCC/IC/ANATEL regulations
Use of this device is subject to the conditions that follow:
There are no user serviceable items inside this device.
The user must install this device in accordance with the supplied installation instructions and must
not modify the device in any manner whatsoever. Any changes or modifications to the device may
void the user’s authority to operate this equipment.
Any service that includes the transmitter must only be done by Hach Company.
This device is considered a “mobile” wireless device per the FCC. For RF exposure safety, the
user must maintain a minimum of 20 cm (8 in.) separation distance from the face of the radar
transmitter when it is in operation.
4.2 Certification
C A U T I O N
This equipment is not intended for use in residential environments and may not provide adequate protection to
radio reception in such environments.
Canadian Radio Interference-Causing Equipment Regulation, ICES-003, Class A:
Supporting test records reside with the manufacturer.
This Class A digital apparatus meets all requirements of the Canadian Interference-Causing
Equipment Regulations.
Cet appareil numérique de classe A répond à toutes les exigences de la réglementation canadienne
sur les équipements provoquant des interférences.
FCC Part 15, Class "A" Limits
Supporting test records reside with the manufacturer. The device complies with Part 15 of the FCC
Rules. Operation is subject to the following conditions:
1. The equipment may not cause harmful interference.
2. The equipment must accept any interference received, including interference that may cause
undesired operation.
Changes or modifications to this equipment not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment. This equipment has been tested
and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules.
These limits are designed to provide reasonable protection against harmful interference when the
equipment is operated in a commercial environment. This equipment generates, uses and can
radiate radio frequency energy and, if not installed and used in accordance with the instruction
manual, may cause harmful interference to radio communications. Operation of this equipment in a
6
English
residential area is likely to cause harmful interference, in which case the user will be required to
correct the interference at their expense. The following techniques can be used to reduce
interference problems:
1. Disconnect the equipment from its power source to verify that it is or is not the source of the
interference.
2. If the equipment is connected to the same outlet as the device experiencing interference, connect
the equipment to a different outlet.
3. Move the equipment away from the device receiving the interference.
4. Reposition the receiving antenna for the device receiving the interference.
5. Try combinations of the above.
Flo-Dar Sensor—Part number list:
Standard U-Sonic 890004901, 890004902; Standard U-Sonic I.S. (Intrinsic Safety) 890004801,
890004802, 890004803; Long-Range U-Sonic 890005201, 890005202, 890005206; Long-Range U-
Sonic I.S. (Intrinsic Safety) 890004804, 890004805, 890004806; Remote Long-Range U-Sonic
890005204, 890005205, 890005207: Remote Long-Range U-Sonic I.S. (Intrinsic Safety) 890004807,
890004808, 890004809
The part numbers above are service only and cannot be purchased – reference only for wireless
certifications.
4.3 Product overview
The Flo-Dar sensor measures the flow velocity and liquid depth in open channels using radar and
ultrasonic technology. The unit is made to withstand submersion during surcharge conditions. The
optional surcharge velocity sensor supplies velocity measurements during surcharge conditions.
Figure 1 shows the configuration of a Flo-Dar system in a non-hazardous location.
Theory of operation information and ordering information for replacement parts are available in the
expanded user manual on the manufacturer's website (http://www.hach.com).
English 7
Figure 1 System overview
1 Flo-Dar sensor with optional surcharge velocity
sensor
3 Mounting frame
2 Flow logger or controller 4 Non-hazardous environment
4.4 Product components
Make sure that all components have been received. Refer to Figure 2 and Figure 3. If any items are
missing or damaged, contact the manufacturer or a sales representative immediately.
8
English
Figure 2 Instrument components
1 Flo-Dar sensor 4 Surcharge velocity sensor (SVS) (optional)
2 Extended range sensor (optional) 5 Flo-Dar connector and SVS connector
3 Bubble level 6 Flo-Dar with bare-wire and SVS with bare-wire
1
Figure 3 Wall mount hardware
1 Wall mount bracket 7 Standard frame
2 Spacer, 12-inch 8 Spacer, 2¼-inch
3 Anchor ,
3
/
8
x 2¼ in. (4x) 9 Adjustable wall bracket
4 Anchor washer (6x) 10 Clamp bolts, ¼-20 x 1 in. (10x)
5 Anchor nut,
3
/
8
-16 (6x) 11 Clamp half, not threaded (2x)
6 Frame for extended range sensor (optional) 12 Clamp half, threaded (2x)
1
Bare-wire is an alternative to the connector.
English 9
Section 5 Installation
D A N G E R
Explosion hazard. Trained personnel only must install or commission the equipment.
5.1 Mechanical installation
5.1.1 Site location guidelines
N O T I C E
To prevent damage to the enclosure, install the instrument away from direct sunlight, ultraviolet radiation (UV),
heat sources and severe weather. Install a sun shade or protective cover above the instrument when the location
is outdoors.
For the best accuracy, install the sensor where the flow is not turbulent. The ideal location is in a
long, straight channel or pipe. Outfalls, vertical drops, baffles, curves or junctions cause the velocity
profile to become distorted.
Where there are outfalls, vertical drops, baffles, curves or junctions, install the sensor upstream or
downstream as shown in Figure 4Figure 6. For upstream locations, install the sensor at a distance
that is at least five times the pipe diameter or the maximum fluid level. For downstream locations,
install the sensor at a distance that is at least ten times the pipe diameter or the maximum fluid level.
If the location contains a junction and the flow in one pipe is much higher, install the sensor on the
wall near the lower flow pipe.
Figure 4 Sensor location near an outfall, vertical drop or baffle
1 Acceptable upstream sensor location 5 Distance downstream: 10 × pipe diameter
2 Outfall 6 Vertical drop
3 Distance upstream: 5 × maximum level 7 Baffle
4 Acceptable downstream sensor location
10 English
Figure 5 Sensor location near a curve or elbow
1 Acceptable upstream sensor location 3 Distance downstream: 10 × pipe diameter
2 Acceptable downstream sensor location 4 Distance upstream: 5 × pipe diameter
English 11
Figure 6 Sensor location near a junction
1 Acceptable upstream sensor location 3 Distance downstream: 10 × pipe diameter
2 Acceptable downstream sensor location 4 Distance upstream: 5 × pipe diameter
5.1.2 Install the sensor
W A R N I N G
Explosion hazard. In hazardous locations, friction between surfaces can generate sparks that can
cause an explosion. Make sure that no friction is possible between the instrument and any surrounding
surfaces.
C A U T I O N
Potential hearing loss risk. Hearing protection required. The level transducer emits ultrasonic sound
energy when powered. Ear protection must be worn when working within 1 meter of this device. Do not
point the transducer output towards ears during installation, calibration and maintenance.
Ultrasonic pressure:
Dimensions of useful beam: Long range
Ultrasonic pressure: > 110 dB at 1 m (3.3 ft) on axis
Sound pressure inside beam: 111.9 dB maximum
Mount the Flo-Dar sensor above the open channel on the wall of the manhole. For hazardous
locations, a barrier must be installed outside of the hazardous area.
For temporary installation, an optional Jack-bar is available. Instructions are supplied with the Jack-
bar.
The sensor dimensions are shown in Figure 7 and Figure 8.
The dimensions of the standard frame for wall installation are shown in Figure 9.
12
English
Figure 7 Sensor dimensions
1 Optional extended range sensor 3 Minimum clearance for cable
2 Minimum clearance for cable with extended range
sensor
English 13
Figure 8 Sensor with SVS dimensions
1 Minimum clearance for cable
Figure 9 Standard frame dimensions
1 579.12 mm (22.8 in.) with 2¼ in. spacer; 828.04 mm (32.6 in.) with 12 in. spacer
5.1.2.1 Assemble the clamps on the frame and wall bracket
Install the clamps on the frame and wall mount bracket before installation on the wall.
14
English
Items to collect: Wall mount hardware (Figure 3 on page 9)
Frame
Wall mount bracket
Clamps
Hardware: wall bracket, spacer, nuts and bolts
1. Put two clamp halves (one with threads and one without threads) around the wall mount bracket.
Refer to Figure 10.
2. Connect the clamp halves together with four bolts. Tighten the bolts sufficiently to temporarily
hold the clamp in position.
3. Put the other two clamp halves around the front end of the frame. Refer to Figure 10.
Note: Typically, the front of the frame will point toward the wall. Refer to Figure 10 and Figure 14 on page 20.
If flow conditions make it necessary to point the sensor away from the wall, use the 12-inch spacer and put the
two clamp halves around the back end of the frame.
4. Connect the clamp halves together with four bolts. Tighten the bolts sufficiently to temporarily
hold the clamp in position.
Figure 10 Assemble the clamps on the wall bracket and frame
1 Adjustable wall bracket 5 Frame
2 Clamp half, threaded 6 Spacer
3 Clamp bolt, ¼–20 x 1 in. 7 Wall mount bracket
4 Clamp half, not threaded
5.1.2.2 Install the frame on the wall
D A N G E R
Explosion hazard. Review the safety information in Confined space precautions on page 5 before
entering a confined space.
English 15
Review the guidelines that follow to find the best location for the sensor.
Examine the upstream and downstream flow characteristics. Use a mirror if necessary. Install the
sensor above the water where the flow is stable. Do not install the sensor where there are
standing waves, pools or objects or materials that can disrupt the flow profile.
If the upstream flow characteristics are acceptable, install the sensor on the upstream wall of the
manhole with the sensor pointing upstream. This location will make sure that the measured flow is
the same as the flow in the pipe and that the sensor cable points away from the wall.
Install the sensor away from the sides of the pipe and in the very center of the flow where the fluid
is at the maximum depth.
Install the sensor in a location that is accessible for maintenance.
Items to collect:
Assembled frame and wall mount bracket assembly
Anchors with nuts and washers
Tools: mirror, ruler or tape measure, marker
Complete the steps to install the frame on the wall of the manhole above the flow. Make sure to obey
all codes and/or directives that are relevant to the location. Refer to Site location guidelines
on page 10.
1. Make a mark on the wall that identifies the location of the top of the sensor frame. Refer to
Figure 11. The wall brackets will be installed above and below this mark.
Sensor without SVS—make sure that when the sensor is in the frame, the radar beam is not
stopped by the wall or channel. Refer to Figure 13 on page 19.
Sensor with SVS—the top of the sensor frame must be installed at an exact distance above the
top of the channel. For pipe diameters that are more than 635 mm (25 in.), measure 127 mm
(5 in.) from the interior crown of the pipe to the top of the frame. For pipe diameters that are
less than 635 mm (25 in.), measure 152.4 mm (6 in.) from the interior crown of the pipe to the
top of the frame.
2. Put the wall mount brackets above and below this mark.
3. Attach the brackets to the wall using the supplied anchors. Install the anchors into 3/8-in.
diameter holes at a depth of 38.1 mm (1.5 in.).
4. Connect the frame to the wall bracket with a spacer. Refer to Figure 11. It may be necessary to
use the 12-inch spacer to position the sensor farther from the wall when there is a large pipe lip.
16
English
Figure 11 Wall installation
1 Distance from interior crown of pipe to top of frame 3 Washer
2 Anchor 4 Nut
5.1.2.3 Install the sensor on the frame
The sensor fits in the frame in only one direction and is held in position when the bail on the sensor is
turned. Refer to Figure 12. The sensor can be removed from the frame and installed without entry
into the manhole when the optional retrieval pole is used.
1. Make sure that the cable is tightly connected to the sensor.
2. Turn the bail to retract the locking bars on the sensor.
3. Put the sensor on the frame. Make sure that the cable points toward the center of the manhole.
4. Turn the bail to hold the sensor on the frame. Refer to Figure 12.
English
17
Figure 12 Horizontal alignment
1 Bubble level 2 Bail
5.1.2.4 Align the sensor vertically – Flo-Dar without SVS
The sensor must be aligned vertically to make sure that the sensor is above the flow and that the
radar beam will not be stopped by the wall or pipe. Refer to Figure 13.
1. Make an estimate of where a line that extends from the top of the radar lens perpendicular to
where the lens will point. Refer to Figure 13.
2. Loosen the clamp on the wall mount bracket and put the frame so that the radar beam will point
below the crown of the pipe by at least 25.4 mm (1 in.). Refer to Figure 13. It may be necessary
to install the 12-inch spacer to extend the frame farther from the wall.
3. Tighten the clamp and measure the frame position. Make sure that the radar beam is not stopped
by the wall or pipe. If the beam is stopped, move the frame further away from the wall with the 12-
inch spacer or lower the frame.
18
English
Figure 13 Vertical alignment of the sensor
1 Spacer 2 Distance from interior crown of pipe to top of frame
5.1.2.5 Align the sensor vertically – Flo-Dar with SVS
The sensor must be aligned vertically to make sure that the sensor is above the flow under normal
full flow conditions and that the SVS is activated under surcharge conditions.
Item to collect: Ruler or tape measure
1. Measure directly above the crown of the pipe to the top of the frame. Refer to Figure 11
on page 17.
2. If the pipe lip is longer than 140 mm (5.5 in.), install the 12-inch spacer between the wall mount
bracket and the frame. Refer to Figure 14.
3. Loosen the clamp on the wall mount bracket and put the top of the frame above the crown of the
pipe at the specified distance:
152.4 mm (6 in.) for a pipe diameter that is less than 610 mm (24 in.)
127 mm (5 in.) for a pipe diameter that is equal to or larger than 610 mm (24 in.)
4. Tighten the clamp and measure the frame position again to make sure that it is at the correct
position.
English
19
Figure 14 Vertical alignment of the sensor with SVS
1 Spacer 3 SVS sensor (optional)
2 Distance from interior crown of pipe to top of frame
5.1.2.6 Align the sensor horizontally
The sensor must be aligned horizontally to make sure that the sensor is over the center of the flow. If
the pipe is not level and has a slope of 2 degrees or more, align the sensor to be parallel with the
surface of the water.
Item to collect: Bubble level
1. Remove the paper backing from the bubble level and attach the level to the sensor. Refer to
Figure 12 on page 18.
2. Loosen the clamps and tap the frame into position.
3. Tighten both clamps and measure the frame position to make sure that it is at the correct
position.
5.1.2.7 Make a final alignment check
The correct vertical and horizontal alignment of the sensor is necessary for accurate measurements.
1. Measure the vertical alignment and make adjustments if necessary. Refer to Align the sensor
vertically – Flo-Dar without SVS on page 18 or Align the sensor vertically – Flo-Dar with SVS
on page 19.
2. Measure the horizontal alignment and make adjustments if necessary. Refer to Align the sensor
horizontally on page 20.
3. Repeat steps 1 and 2 until no further adjustments are necessary.
5.1.2.8 Optional extended range sensor installation
The extended range sensor (Figure 15) can be used when the pipe or channel depth is more than
the standard level specifications. Refer to Specifications on page 3.
Use the extended frame (Figure 16) instead of the standard frame, or mount the extended range
sensor on the wall.
The extended range sensor must be installed at least 457.2 mm (18 in.) above the crown of the pipe
for correct measurements. The extended range sensor has a deadband zone of 431.8 mm (17 in.)
where the sensor is not active.
20
English
  • Page 1 1
  • Page 2 2
  • Page 3 3
  • Page 4 4
  • Page 5 5
  • Page 6 6
  • Page 7 7
  • Page 8 8
  • Page 9 9
  • Page 10 10
  • Page 11 11
  • Page 12 12
  • Page 13 13
  • Page 14 14
  • Page 15 15
  • Page 16 16
  • Page 17 17
  • Page 18 18
  • Page 19 19
  • Page 20 20
  • Page 21 21
  • Page 22 22
  • Page 23 23
  • Page 24 24
  • Page 25 25
  • Page 26 26
  • Page 27 27
  • Page 28 28
  • Page 29 29
  • Page 30 30
  • Page 31 31
  • Page 32 32
  • Page 33 33
  • Page 34 34
  • Page 35 35
  • Page 36 36
  • Page 37 37
  • Page 38 38
  • Page 39 39
  • Page 40 40
  • Page 41 41
  • Page 42 42
  • Page 43 43
  • Page 44 44
  • Page 45 45
  • Page 46 46
  • Page 47 47
  • Page 48 48
  • Page 49 49
  • Page 50 50
  • Page 51 51
  • Page 52 52
  • Page 53 53
  • Page 54 54
  • Page 55 55
  • Page 56 56
  • Page 57 57
  • Page 58 58
  • Page 59 59
  • Page 60 60
  • Page 61 61
  • Page 62 62
  • Page 63 63
  • Page 64 64
  • Page 65 65
  • Page 66 66
  • Page 67 67
  • Page 68 68
  • Page 69 69
  • Page 70 70
  • Page 71 71
  • Page 72 72
  • Page 73 73
  • Page 74 74
  • Page 75 75
  • Page 76 76
  • Page 77 77
  • Page 78 78
  • Page 79 79
  • Page 80 80
  • Page 81 81
  • Page 82 82
  • Page 83 83
  • Page 84 84
  • Page 85 85
  • Page 86 86
  • Page 87 87
  • Page 88 88
  • Page 89 89
  • Page 90 90
  • Page 91 91
  • Page 92 92
  • Page 93 93
  • Page 94 94
  • Page 95 95
  • Page 96 96
  • Page 97 97
  • Page 98 98
  • Page 99 99
  • Page 100 100
  • Page 101 101
  • Page 102 102
  • Page 103 103
  • Page 104 104
  • Page 105 105
  • Page 106 106
  • Page 107 107
  • Page 108 108
  • Page 109 109
  • Page 110 110
  • Page 111 111
  • Page 112 112
  • Page 113 113
  • Page 114 114
  • Page 115 115
  • Page 116 116
  • Page 117 117
  • Page 118 118
  • Page 119 119
  • Page 120 120
  • Page 121 121
  • Page 122 122
  • Page 123 123
  • Page 124 124
  • Page 125 125
  • Page 126 126
  • Page 127 127
  • Page 128 128
  • Page 129 129
  • Page 130 130
  • Page 131 131
  • Page 132 132
  • Page 133 133
  • Page 134 134
  • Page 135 135
  • Page 136 136
  • Page 137 137
  • Page 138 138
  • Page 139 139
  • Page 140 140
  • Page 141 141
  • Page 142 142
  • Page 143 143
  • Page 144 144
  • Page 145 145
  • Page 146 146
  • Page 147 147
  • Page 148 148
  • Page 149 149
  • Page 150 150
  • Page 151 151
  • Page 152 152
  • Page 153 153
  • Page 154 154
  • Page 155 155
  • Page 156 156
  • Page 157 157
  • Page 158 158
  • Page 159 159
  • Page 160 160
  • Page 161 161
  • Page 162 162
  • Page 163 163
  • Page 164 164
  • Page 165 165
  • Page 166 166
  • Page 167 167
  • Page 168 168
  • Page 169 169
  • Page 170 170
  • Page 171 171
  • Page 172 172
  • Page 173 173
  • Page 174 174
  • Page 175 175
  • Page 176 176
  • Page 177 177
  • Page 178 178
  • Page 179 179
  • Page 180 180
  • Page 181 181
  • Page 182 182
  • Page 183 183
  • Page 184 184
  • Page 185 185
  • Page 186 186
  • Page 187 187
  • Page 188 188
  • Page 189 189
  • Page 190 190
  • Page 191 191
  • Page 192 192
  • Page 193 193
  • Page 194 194
  • Page 195 195
  • Page 196 196
  • Page 197 197
  • Page 198 198
  • Page 199 199
  • Page 200 200
  • Page 201 201
  • Page 202 202
  • Page 203 203
  • Page 204 204
  • Page 205 205
  • Page 206 206
  • Page 207 207
  • Page 208 208
  • Page 209 209
  • Page 210 210
  • Page 211 211
  • Page 212 212
  • Page 213 213
  • Page 214 214
  • Page 215 215
  • Page 216 216
  • Page 217 217
  • Page 218 218
  • Page 219 219
  • Page 220 220
  • Page 221 221
  • Page 222 222
  • Page 223 223
  • Page 224 224
  • Page 225 225
  • Page 226 226
  • Page 227 227
  • Page 228 228
  • Page 229 229
  • Page 230 230
  • Page 231 231
  • Page 232 232
  • Page 233 233
  • Page 234 234
  • Page 235 235
  • Page 236 236
  • Page 237 237
  • Page 238 238
  • Page 239 239
  • Page 240 240
  • Page 241 241
  • Page 242 242
  • Page 243 243
  • Page 244 244
  • Page 245 245
  • Page 246 246
  • Page 247 247
  • Page 248 248
  • Page 249 249
  • Page 250 250
  • Page 251 251
  • Page 252 252
  • Page 253 253
  • Page 254 254
  • Page 255 255
  • Page 256 256
  • Page 257 257
  • Page 258 258
  • Page 259 259
  • Page 260 260
  • Page 261 261
  • Page 262 262
  • Page 263 263
  • Page 264 264
  • Page 265 265
  • Page 266 266
  • Page 267 267
  • Page 268 268
  • Page 269 269
  • Page 270 270
  • Page 271 271
  • Page 272 272
  • Page 273 273
  • Page 274 274
  • Page 275 275
  • Page 276 276
  • Page 277 277
  • Page 278 278
  • Page 279 279
  • Page 280 280
  • Page 281 281
  • Page 282 282
  • Page 283 283
  • Page 284 284
  • Page 285 285
  • Page 286 286

Hach Flo-Dar Basic User Manual

Taper
Basic User Manual

dans d''autres langues